Modern Phytomorphology

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal..

Tissue organization and cell ultrastructure in the roots of three Arabidopsis species grown at different zinc concentrations


M. Čiamporová, A. Staňová, E. Ďurišová, V. Banásová

The model plant Arabidopsis thaliana is known to be heavy metal-sensitive in contrast to its relative species A. arenosa and A. halleri classified as pseudometallophytes. Quantitative differences in primary root anatomy previously found between A. thaliana and the non-metallicolous (NM) and metallicolous (M) populations of the non-model Arabidopsis species necessitated further research at cellular and ultrastructural levels. Seedlings of A. thaliana, ecotype Columbia and a natural population Ratkovo, the NM and M populations of A. arenosa and A. halleri were grown on agar medium containing 10 µM (control) and 1000 µM Zn2+ for 5 days. Light microscopy confirmed the higher number of cells in the endodermal, cortical and epidermal layers and a higher incidence of additional cell tiers, the so-called middle cortex (MC) in the tolerant genotypes. Such differences were present in untreated plants and even more pronounced in plants exposed to excess of zinc (Zn). Electron microscopy of the root tissues at comparable distances from the root tip showed Casparian bands only in the radial cell walls of endodermis of A. halleri M population originating from severely (Cu, Cd and Pb) contaminated site. Casparian bands were not differentiated yet in the roots of the other species and populations, and they were not formed in the cell walls between endodermis and MC cells. In the apical cytoplasm of trichoblast bulges, autophagic vacuoles were found only in the sensitive A. thaliana and small vacuoles in the other genotypes. The enhanced concentration of Zn confirmed the higher metal sensitivity of the model species and did not substantially disturb the root cell ultrastructure of the tolerant Arabidopsis species.



Share this article

slot demo