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Abstract
Flavonoids are a large class of plant polyphenols with various adaptation functions to environmental factors. The biosynthesis of 
flavonoids is characterized by a high plasticity of their synthesis and multiple species differences. The HPLC spectra of flavonoid 

Each chromatograms of all species differed in the number of peaks, peak areas, and peak release times (compounds).

It was shown that the system of flavonoid biosynthesis is fractal in nature. The species groups of flavonoids have properties of strange 
attractors. Using the Principal Component Analysis (PCA) clear differences between species and groups of species in contrasting 
ecosystems is shown. Thus, species-specific populations of flavonoids and compounds with similar physicochemical properties are 
a distinct regional product. In this regard, along with the search and selection of individual plant species based on the content of one 
compound, it seems appropriate to search for effective regional complexes of flavonoids.
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Introduction

Ecological physiology of plants is a scientific field 
that studies the ways and methods of plant adaptation to 
changing environments. In recent years, the description 
of habitats (mainly soils) tends to use stochastic rather 
than deterministic ideas. The stochastic properties of 
plant habitats (nutrient content and biotic environment) 
are backed by a significant amount of evidence (Hubbell 
2001, 2006; Tilman 2004; Rosenberg 1984, 2013; Gelashvili 
et al. 2013; Usmanov et al. 2014, 2016, 2017).

At the same time, plant organisms were until recently 
deemed to be opposite to stochastic systems and defined 
as deterministic systems whose parameters were to 
be observed in experimentation. Plant physiology 

literature of recent years uses no such concept as 
stochastic processes (Lambers et al. 2008). However, 
more and more papers are being published that dwell 
upon systems featuring multiple regulators, as the 
biosynthesis of specific metabolism elements can be 
affected by exogenous and endogenous regulators of 
both stimulating and inhibiting effects, whether uni- 
or omnidirectional (Kolchanov et al. 2013; Bundy et al. 
2008). An unpredictable combination of control signals 
can guide alternative metabolic pathways, where the 
metabolic pathways branch point can be defined as the 
point of bifurcation. When multiple control signals are 
in effect, i.e. multiple bifurcations take place, it is often 
impossible to trace all the effects in total, which is why 
the system behaviour may seem random. This situation 
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is defined as dynamic chaos, a phenomenon dictated by 
deterministic laws, but has a random-looking behavioural 
output.

These properties of the flavonoid biosynthesis system 
can be compared to those of strange attractors. Strange 
attractors have the following important features: These 
properties of the flavonoid biosynthesis system can 
be compared to those of strange attractors. Strange 
attractors have the following important features:

1. There are boundaries of the phase space (area, 
volume, and multidimensional spaces), where points are 
moved

2. There are many volatile point trajectories. The 
volatility of trajectories depends on how sensitive their 
dynamics is to external regulators. Those can force 
points to further move along different trajectories. The 
“choice” of an alternative trajectory from several options 
is defined as bifurcation. If there are multiple points of 
bifurcation, the set of trajectories manifests itself as a 
stochastic fractal

The purpose hereof is to analyse the general 
parameters of the flavonoid biosynthesis system and 
to find where the dynamics of strange attractors and 
flavonoid synthesis is similar 

Such an analysis of the similarities and differences 
of systems for constructing strange attractors and 
the functioning of metabolic pathways of flavonoid 
biosynthesis has not been carried out before

3. There are attractors within the phase space (i.e. 
that of attracting points or trajectories) that guide the 
movement of a set of points (trajectories) in adaptation, 
ontogenesis, or sundry processes appropriately for the 
system’s purpose (Rozenberg, 2013)

. The authors hereof earlier showed (Usmanov et al. 
2014, 2015, 2016, 2017, 2019, 2020; Ivanov et al. 2016, 2019) 
that the entire flavonoid biosynthesis system was of a 
fractal nature. 

The purpose hereof is to analyse the general 
parameters of the flavonoid biosynthesis system and 

to find where the dynamics of strange attractors and 
flavonoid synthesis is similar. Such an analysis of the 
similarities and differences of systems for constructing 
strange attractors and the functioning of metabolic 
pathways of flavonoid biosynthesis has not been carried 
out before.

Materials and Methods

Samples were collected in ecologically contrasting 
communities of Western Siberia and the steppes of 
the South Trans-Urals. Each of the areas is ecologically 
homogeneous. The raised bogs of Western Siberia were 
represented by Oxicocco-sphagnetea. The team studied the 
dominant species of Oxycoccus palustris, Chamaedaphne 
calyculata, and Andromeda polifolia. The true steppes of the 
South Trans-Urals were represented by the community 
of Festuco-Brometea, where the dominant species are 

Ground-level biomass was sampled from these 
species in the middle of vegetation (late June). Spectra 
of flavonoids and physico-chemically similar compounds 
in Juniperus sabina conifer were determined by High-
Performance Liquid Chromatography (HPLC). Alcohol 
extracts of the conifer samples were chromatographed in 
the reverse-phase mode on a Luna C18 250 × 4.6 mm, 5 μm 
column. Standards and substances in the samples were 
detected at a wavelength of 360 nm. 

The similarity and dissimilarity of chromatograms 
were evaluated by means of Koch’s biotal dispersity index:

T Sjd = S
n -1
−

×

where, T is the sum of substances in the lists 
(S1+S2+S3+...+Sn); S is the total number of substances; n 
is the number of lists.

The index values could vary from 0 (zero similarity) to 
1 (totally identical) (Koch 1957). 

Fractal analysis followed the algorithm below (Tab.1.), 
based on the summary by Gelashvili et al. (2013).

Stages of аnalysis Procedure Results

Sampling Non-formalized selection of an 
assumed self-similar structure

The minimal self-similar structure was defined as a separate single 
chromatogram

Skaling Estimation of the range of various 
scales of a set of self-similar structures

All chromatograms from an ecologically homogeneous area (stenosis) from 
single samples through samples of various sizes to a total population

Estimation of self-simulation Mq(N) = ( )

1

N

i
Pi

=∑

The entire chosen set of chromatograms and their aggregates possess the 
property of self-similarity, since all the correlations between the logarithms 

of Mq and N are significant (p>0.05), and the values of the correlation 
coefficients tend to 1.

Estimation of stochasticity 
(Akaike Information Criterion 

(AIC))
In RSS n kAIC

n n k Z'
+

− −
In all cases, the nonlinear model is better applicable to the observed pattern 

than the linear one.

Estimation fractal properties 
of chromatogram’s pool Complete of chromatograms are all are stochastic organized self-similar structures, forming fractal stochastic systems

Table 1. General algorithm of the fractal analysis of the sum of chromatograms.
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The final step was to analyse the entirety of 
chromatograms of all species by the main component 
method in addition to the sets of low-molecular 
metabolites (Smolikova et al. 2015).

Results and Discussion

HPLC spectra of flavonoids and physico-chemically 
similar substances

Chromatograms were compared in three parameters: 
(1) the peak time, an indicator of the presence of this 
or that substance; (2) the number of peaks during 
chromatography, an indicator of the total amount of 
substances in the extract; (3) the peak area, an indicator 
of the relative content of a substance in the extract.

The researchers registered a high diversity of extract 
chromatograms for each studied species. Fig. 1. shows 

some chromatograms of Juniperus sabina. Step 1 was to 
count the peaks in each chromatogram, see Tab. 2.

To compare chromatograms in terms of peak time 
coincidence, they were superimposed on each other; see 
Fig. 2 and 3. On a single chromatography time axis, peak 
times differed significantly. Thus, peak time coincidence 
was low. The Koch’s variability index was used to compare 
the chromatogram series. For all the species under 
analysis, the Koch’s coefficient was low and varied from 
0.11 to 0.18, a sign of low chromatogram similarity. After 
that, the researchers counted the total peaks for all the 
plants of the species.

Fractal chromatogram analysis 

Fractal analysis began with sampling, i.e. selecting a 
structure that for further analysis would be deemed self-

Communities/species Total peaks in all 
chromatograms

Variability of the peak count in 
single chromatograms

Koch’s coefficient for the 
chromatogram groups

Oligotrophic swamps, Oxicocco-Sphagnetea communities
Chamaedaphne calyculata 109 21-41 0.11

Oxycoccus palustris 85 21-30 0.11
Andromeda polifolia 91 19-43 0.12

True steppes, Festuco-Brometea communities
Juniperus sabina 79 21-45 0.14

Glycyrrhiza korshinskyi 85 14-39 0.16
Achillea millefolium 40 12-22 0.18

Table 2. Total count of species peaks and variability of chromatograms across six species.

Figure 1. Diversity of chromatograms as observed for Juniperus Sabina. Axe “x”-time along the X-axis-the time of the peak emergence at HPLC analis; 
Y-axis: peak characteristic-area, height as an indicator of the amount of a given compound. Numbers indicate the peak time. Each peak characterizes 
a separate substance.
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similar; the next step was to consider a hierarchy that 
would preserve self-similarity (scaling).

The elementary (self-similar) unit of hierarchy was the 
chromatogram of a standard plant material sample. Each 
chromatogram had three characteristics: (1) peak time 
in a standard solvent system; (2) peak areas in millivolts, 
an indicator in linear correlation to the substance 
concentration; (3) peak count in the chromatogram.

Scaling was done by the staged superimposition of 
chromatograms, see Tab. 3. A similar chromatograms 
superimposition procedure was performed for every 

species. All species had their peak counts increasing as 
the samples of merged chromatograms grew larger.

Thus, the following qualitative traits were found for 
the tested species: (1) all chromatograms were highly 
heterogeneous and had low similarity; (2) the total of 
substances in cenopopulations always exceeded that in 
any recorded chromatogram; (3) total peak count in a 
cenopopulation differed across species. Thus, the team 
confirmed the self-similarity of all chromatograms and 
their combinations obtained by superimposition. All 
individual chromatograms and their combinations had 

 
Figure 2. Chromatograms of tested plants from the South Trans-Urals. Overlapping of several chromatograms of each species indicates differences 
between the individual chromatograms.

Usmanov et al.
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Figure 3. Chromatograms of the tested plants from oligotrophic bogs of Western Siberia. Overlapping of several chromatograms of each species 
indicates differences between the individual chromatograms.

Levels of combining chromatograms The number of peaks in the chromatograms with different combinations
The number of peaks in individual chromatograms 36 41 34 33 30 34 32 28 21

Combining chromatograms of three 54 49 43
Combining chromatograms in 2 groups 75 69

Total number of peaks for all plants 108

Table 3. Peak count hierarchy with more chromatograms merged, evidence from Chamaedaphne calyculata.



Iskander et al.

|

Modern Phytomorphology 14, 2020

82

an independent distribution of chromatogram elements, 
as the count and qualitative composition of peaks were 
distributed independently. 

Another common feature was the Akaike information 
criterion (Gelashvili et al. 2013) that consistently pointed 
to the complexity of a model that would describe the 
flavonoid biosynthesis tree.

Principal Component Analysis (PCA)

The next step was to evaluate all the chromatograms 
(Fig. 4.) by the Principal Component Method (PCA).

As shown in Fig. 4, chromatograms of all six species 
formed compact groups. Calculations showed that 
chromatograms of all species had clearly-bordered, non-
intersecting phase spaces. Moreover, chromatograms did 
join in two regional groups; let us designate them as the 
Siberian group and the Ural group. Another feature was 
that the 2D projections of mutual positions of species 
groups described only 35.53 (Factor 1+Factor 2) of the 
entire diversity of regulators that determined their 
differences. Nearly 2/3 of all factors that determined 
the diversity of flavonoids were not interpreted in this 
coordinate system.

Thus, all the tested species had stochastic fractal 
properties. In general, the flavonoid synthesis process 
could be imagined as choosing this or that substance 
from a set of possible compounds, see Tab. 3. Such 
results could be analysed from the standpoint of the 
neutrality theories. In the molecular neutrality theory 
model by Kimura (1983), neutrality is a random set of the 

existing genes, the choice of which has a weak correlation 
with the external conditions. The neutrality theory 
assumes the existence of a “general population” that can 
produce various combinations of “responses”. Similar 
reasoning, later proven by facts, was the basis of the plant 
community models. In that case, neutrality is the random 
introduction of this or that species from the total flora list 
of the region to the community. The applicability of the 
neutrality theory was not tested on the level of metabolic 
pathway analysis.

Flavonoids are a large group of secondary plant 
metabolites that have numerous adaptive functions. 
Flavonoid biosynthesis is a classic tree that originates 
from a single precursor (naringenin chalcone) and 
forms multiple branching metabolic chains. Transitions 
between substances in plants are defined by common 
patterns of radical attachment or replacement, see  
Tab. 4. In any case, any substance must have a continuous 
chain of successive biosynthesis from the original 
naringenin chalcone molecule to the substance. Besides, 
the flavonoid biosynthesis system features numerous 
alternative pathways (shunts) that can link adjacent 
chains. The total number of such shunts is unknown as 
of today (Korulkin 2007; Tyukavkina 2008; Mierziak et al. 
2013; Harborne 2013).

Each new substance of a metabolic tree is synthesized 
if there is an elementary conductive metabolic cell: 

elementary cells can synthesize any substance. Metabolic 
chains are fundamentally continuous, as the end 
substance can only emerge where all the preceding links 

 
Figure 4. Distribution of chromatograms of steppe and bog species in the habitat feature space.

Usmanov et al.
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have continuity. However, such a conductive metabolic 
cell is itself subject to numerous regulatory effects on 
the genetic, substrate, physiological, and ecological levels 
(Kolchanov et al. 2013; Khlestkina et al. 2014; Shuyskaya et 
al. 2014; Shcherbakov et al. 2011, 2012).

Conclusion

The flavonoid biosynthesis system forms a network. 
It can be assumed there can be multiple point-to-point 
routes, including alternative pathways (shunts). It can 
also be assumed that such alternative pathways have 
not yet been described in literature. There is substantial 
evidence that each specific biosynthesis of flavonoids 
has a pronounced activation and inhibition system. It 
is the presence of branched networks and alternative 
biosynthesis pathways that enables bypassing this or that 
unfavorable combination of activators and inhibitors for 
a metabolic cell via other metabolic cells, for which that 
combination is not critical.

Further research will seek answers to two questions 
of the properties of the strange flavonoid biosynthesis 
attractor. Phase space for a set of flavonoids has been 
clearly identified for all six species. The question is the 
meaning of this phase space in ecological and physiological 
terms. One may assume it is somehow related to the 
multidimensional space of the species’ ecological niche. 
The other question is whether the movement of the phase 
attractor centers has an adaptive value or is a product of 
the chaotic fluctuations in the environmental conditions.
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