УДК:581.845:634.8

КОЛИЧЕСТВЕННАЯ АНАТОМИЯ ЛИСТОВОЙ ПЛАСТИНКИ ВИНОГРАДА (VITIS L.)

Валентин С. Кодряну

Аннотация. С целью выявления адаптивных признаков засухоустойчивости винограда, которые могут быть использованы в селекционных и интродукционных работах в роде *Vitis* L., определены биометрические величины 21 морфо-анатомического признака пластинки листа у 5 видов рода *Vitis*, 10 сортов вида *V. vinifera* L. и 10 отдаленных гибридов *V. vinifera* × *Muscadinia rotundifolia* (Michx.) Small.

В результате этого исследования выявлены 6 количественных признаков листовой пластинки, которые определяют относительную засухоустойчивость винограда. Более засухоустойчивыми являются виды, сорта и гибриды винограда, у которых средняя толщина листовой пластинки больше; средняя площадь пластинки листа меньше; отношение средней площади сухой листовой пластинки к ее среднему объему меньше; сухая масса пластинки листа больше; степень сочности и степень склерофилии листовой пластинки больше.

Ключевые слова: Vitis, виноград, анатомия, морфология, листовая пластинка, эпидерма, паренхима, устьица, засухоустойчивость

Ботанический сад (Институт) Академии Наук Республики Молдова, ул. Лесная 18, г. Кишинэу, МД 2002, Молдова; gradinabotanica@moldnet.md; www.gradinabotanica.asm.md

Введение

В результате изучения работ различных авторов по структуре и засухоустойчивости цветковых растении (Эзау 1980; Культиасов 1982; Крамер Козловский, 1983; Жученко 1988), также касающихся a анатомо-морфологического строения засухоустойчивости видов и сортов рода Vitis L. (Баранов 1946; Негруль 1946; Василевская 1954; Costantinescu et al. 1970; Chirilei et al. 1970; Dűring & Scienza 1980; Burzo et al. 1999; Jakson 2008), был подобран комплекс морфо-анатомических признаков листовой пластинки, которые были исследованы для определения их роли в засухоустойчивости видов и сортов винограда.

Материалы и методы исследований

Материал для исследования – зрелые видов И сортов винограда, собраные 24.07.2012 в ампелографической Научно-Практического коллекции Института Плодоводства И Пищевых Технологий, расположенной вблизи города Кишинэу. Листья отдаленных гибридов V. $vinifera \times M.$ rotundifolia, созданных д.б.н. Е. Александровым, были собраны в коллекции винограда Ботанического сада (Института) Академии Наук Республики Молдова также в г. Кишинэу.

Количественная анатомия эпидермы листовой пластинки у сортов и видов, отдаленных гибридов винограда была изучена в светооптическом микроскопе Ergaval на репликах (оттисках) абаксиальной и адаксиальной эпидерм, изготовленных из бесцветного лака «Golden Rose» (Codreanu 2006, 2007, 2011; Codreanu et al. 2008). Для изучения поперечных срезов листовой пластинки винограда была использована методика изготовления временных препаратов, описанная в другой работе

(Содками 2009). Для определения средней площади листовой пластинки использован ампелометрический метод (Петраш 1986). Определение содержания воды, свежей и сухой массы листовых пластинок винограда выполнено по методике Н.Н. Третьякова (1990).

Результаты и их обсуждение

Результаты биометрии 21 морфоанатомического признака листовой пластинки различных видов и сортов винограда приведены в Табл. 1-3.

Листовая пластинка винограда является дорзо-вентральной, гипостоматической и гетеробарической.

Эпидерма листа винограда (Vitis) – первичная защитная ткань, состоящая из одного ряда клеток, различных по форме, структуре и функциям. Эта ткань покрывает мезофилл и образует на вентральной (верхней) стороне листа адаксиальную эпидерму, а на дорсальной (нижней) стороне – абаксиальную эпидерму.

Адаксиальная эпидерма, в плане, состоит из одного ряда клеток, плотно расположенных одна к другой. Клетки имеют форму полигона с 5-8 сторонами различной длины. Наружные антиклинальные стенки этих клеток утолщены сильнее, чем радиальные и покрыты слоем кутикулы различной толщины у разных сортов и видов винограда. Клетки адаксиальной эпидермы листовой пластинки у некоторых видов и сортов винограда формируют выросты – трихомы. Самый распространенный вид трихом у винограда – кроющие волоски. Адаксиальная эпидерма листа винограда не содержит устьиц.

Абаксиальная эпидерма также состоит из одного ряда клеток, но содержит больше морфологических типов клеток: основные эпидермальные клетки, устьица, побочные клетки, соседние клетки и кроющие волоски, различные по форме, структуре и величине.

Главная функция эпидермы листа – защита растения винограда от излишней потери воды и питательных веществ, защита от механических повреждений

проникновения патогенных микроорганизмов. Устьица, совместно побочными И соседними клетками, образуют устьичные аппараты (комплексы). абаксиальной эпидермы листовой пластинки винограда характерен актиноцитный морфологический тип устьиц. актиноцитного устьичного аппарата побочные клетки отличаются от основных эпидермальные клеток по форме и величине. Они образуют вокруг замыкающих клеток розету. Латеральные стенки клеток розеты направлены к апертуре устьица.

Частота устьиц абаксиальной эпидермы листа характерна для вида и сорта, видоспецифична и сортоспецифична, но изменяется под влиянием факторов окружающей среды.

Уизученных в 2010 году 10 видов винограда и 14 сортов вида V. vinifera частота устьиц варьирует от 156,40 устьиц/мм 2 у V. solonis Planch., до 239,80 устьиц/мм² – у *V. romanetii* Rom. Caill. У сортов винограда частота устьиц варьирует от 102,28 устьиц/мм² у сорта 'Рара нягрэ', до 250,40 устьиц/мм 2 – у сорта 'Гордин'. Устьичный индекс варьирует от 4,46 % у сорта 'Граса де Котнарь', до 8,97 % – у вида V. cinerea Engelm. ex Millardet. Частота абаксиальных эпидермальных клеток листовой пластинки варьирует от 2021 клетки/мм² у сорта *'Коарнэ* нягрэ' до 3950 клеток/мм 2 – у сорта 'Фетяска албэ'. Средняя площадь клеток абаксиальной эпидермы варьирует от 494,80 мкм² у сорта 'Коарна нягрэ' до 253,16 мкм² – у сорта 'Фетяска албэ'.

Частота клеток адаксиальной эпидермы у всех изученных видов и сортов винограда меньше, чем частота клеток абаксиальной эпидермы и в 2010 году варьирует от 1309 клеток/мм² у сорта 'Киш-миш алб овал' до 2797 клеток/мм² – у вида V. californica Benth. Средняя площадь адаксиальных эпидермальных клеток больше, чем у абаксиальных клеток.

Установлена следующая закономерность, характерная для устьиц и эпидермальных клеток листовой пластинки винограда: увеличение частоты устьиц и клеток адаксиальной и абаксиальной эпидермы

Таба. 1. Биометрические величины морфо-анатомических признаков листовой пластинки, на поперечном срезе, у отдаленных гибридов винограда (2012 год). Table 1. Biometric values of morpho-anatomic characters of the leaf blade, in cross section, for distant hybrids of the grapevine (2012).

вой Устьичный	поверхности	9	7	8	S	9			9	9	9
Средняя площадь клеток эпидермы на 1 мм² площади листовой пластинки	поверхности	441,70	449,03	385,80		368,86	400,48	331,12	355,49	454,75	335,23
	в∀чксичурной	497,26	1008,06	620,96	68,789	898,47	898,47	519,75	535,61	641,02	589,62
Частота клеток эпидермы на 1 мм² площади листовой пластинки	абакспальной поверхности	2264	2227	2892	2949	2711	2497	3020	2813	2199	2983
l ' ' ' .	адаксиальной поверхности	2011	992	1610,40	1520	1113	1113	1924	1867	1560	1696
Ширина	устьиц (в мкм)	21,28	17,10	15,50	13,45	19,01	16,60	16,67	15,00	15,73	16,78
Длина	устьиц (в мкм)	30,88	28,29	25,50	29,70	33,25	28,80	28,81	25,28	29,94	28,59
Частота устьиц	- на 1 мм площади листовой пластинки	119,83	144,25	186,12	141,80	155,40	165,60	192,75	170,25	131,75	181,00
Ширина клеток эпидермы (в мкм)	абакспальной поверхности	19,60	18,30	20,02	19,21	18,36	19,90	18,50	15,93	17,40	14,70
Ширина к эпидермы (в мкм)	адаксиальной поверхности	21,25	21,07	22,37	21,76	26,51	24,23	23,18	21,34	21,15	15,46
на (йотьгоўт ымпхнэдеп	65,72 115,32	65,10 113,15	104,66	71,68 101,99	53,06 105,03	104,91	106,83	16'96	97,34	59,46 84,47
Толщина (в мкм)	палисадной паренхимы	65,72	65,10	70,31	71,68	63,06	62,00	58,04	92'69	59,71	59,46
Средняя	листовой пластики (в мкм)	221,89	217,70	217,36	214,65	212,96	211,04	206,55	203,44	195,67	174,09
	Гибрид	DRX-M _s -14	$DRX-M_s-20$	$DRX-M_s-17$	$DRX-M_4-580$	$DRX-M_4-641$	$DRX-M_4-537$	$DRX-M_4-502$	DRX-M ₄ -536 203,44	DRX-M ₄ -578 195,67	DRX-M ₄ -504 174,09

гибридов винограда (2012 год). Таба. 2. Биометрические величины некоторых морфо-анатомических признаков листовой пластинки, которые определяют засухоустойчивость отдаленных

Table 2. Biome	etric values of	some morph	o-anatomic o	characters of t	he leaf blade,	which determ	nine drought	resistance of g	Table 2. Biometric values of some morpho-anatomic characters of the leaf blade, which determine drought resistance of grapevine hybrids (2012)	lds (2012).		
	Свежие листья	АСТЬЯ		Сухие листья	ТЬЯ		Вода		•			
Гибрид	Средняя площадь (S) листовой пластинки (в см 2)	Средний объем (V) листовой пластинки (в см 3)	Отношение S:V	Средняя площадь (S) листовой пластинки (в см 2)	Средний объем (V) листовой пластинки (в см 3)	Отношение S:V	Масса (в г)	% из свежей массы листовой пластинки	Степень сочности (масса воды : средняя площадь листовой пластинки (g:S)	Характер склерофилии (сухая масса листовой пластинки : средняя площадь листовой пластинки (g:S)	% сухой массы листовой пластинки	Засухо-устойчивость (место в ряду)
DRX-M ₄ -502	82,66	1,8849	43,85	82,66	0,5062	163,29	1,3787	73,1445	0,0167	0,0062	26,85	6
$DRX-M_4-641$	119,37	2,6506	45,03	119,37	0,6967	171,33	1,9539	73,7154	0,0164	0,0059	26,28	10
DRX-M _s -17	61,59	1,3108	46,98	61,59	0,4480	137,47	0,8628	65,8224	0,0140	0,0073	34,17	1
DRX-M ₄ -580	62,33	1,3187	47,26	62,33	0,4315	144,45	0,8872	67,2784	0,0143	0,0070	32,72	ω
$DRX-M_4-S78$	97,39	2,0510	47,48	97,39	0,6888	141,39	1,3622	66,4164	0,0140	0,0071	33,58	2
$DRX-M_4-S36$	111,36	2,2860	48,71	111,36	0,6828	163,02	1,6032	70,1313	0,0144	0,0062	29,86	9
$DRX-M_s-20$	81,79	1,6507	49,55	81,79	0,5347	152,96	1,1160	67,6077	0,0137	0,0066	32,39	4
$DRX-M_s-14$	70,17	1,4075	49,85	70,17	0,4359	160,97	0,9716	69,0302	0,0139	0,0063	30,97	S
$DRX-M_4-S04$	94,80	1,8098	52,38	94,80	0,5535	171,27	1,2563	69,4166	0,0133	0,0059	30,58	7
DRX-M ₄ -537	100,17	1,8390	54,47	100,17	0,6234	160,68	1,2156	66,1012	0,0122	0,0063	33,89	∞

Табл. 3. Биометрические величины морфо-анатомических признаков листовой пластинки, которые определяют засухоустойчивость видов и сортов винограда (2012 rod).

Table 3. Biometric values of morpho-anatomic characters of the leaf blade, which determine drought resistance of grapevine species and cultivars (2012).

				,			,					
	Свежие листья	СТЬЯ		Сухие листья	ЪЯ		Вода					
Вид или сорт винограда	Средняя площадь (S) листовой пластинки (в см²)	Средний объем (V) листовой пластинки (в см³)	V:8 эннэшонтО	Средняя площадь (S) листовой пластинки (в см²)	(V) мэ-дой минд о́Средний объем (У) я) ихнитэвлп йовотэми (£мэ)	V:8 эннэшонтО	Масса (в г)	% из свежей массы лостовой пластинки	Степень сочности (масса воды : средняя площадь листовой пластинки (g:S)	Характер склерофилип Тарактер склерофилип Тарактер Суза масса л. пластинки гором го	% сухой массы листовой	Засухоустойчивость (место в ряду)
V. silvestris Gmel.	64,81	1,7278	37,51	64,81	0,5813	111,49	1,1465	66,35	0,0177	0,0000	33,64	3
V. californica Benth.	36,26	0,9558	37,93	36,26	0,3595	100,86	0,5963	62,38	0,0165	0,0100	37,61	1
V. rupestria Scheele.	35,43	0,8381	42,27	35,43	0,2881	122,97	0,5500	65,62	0,0156	0,0082	34,37	2
V. monticola Buckl.	63,05	1,6188	38,95	63,05	0,4989	126,37	1,1199	81,69	0,0178	0,0080	30,81	4
V. amurensis Rupr.	54,67	1,3738	39,79	54,67	0,3701	119,05	0,9108	66,29	0,0167	8900'0	26,93	S
'Coarna neagră'	81,25	2,7834	29,19	81,25	0,8730	93,07	1,9104	68,63	0,0236	0,0108	31,36	1
'Serexia neagră' ('Rara neagră')	110,05	3,2330	34,18	110,05	0,9850	112,18	2,2480	69,53	0,0205	0,0000	30,46	2
'Gordin'	85,65	2,4278	35,28	85,65	0,7284	117,58	1,6994	66'69	0,0199	0,0085	30,00	4
'Fefeasca albă'	73,59	1,9995	36,80	73,59	0,6053	121,57	1,3942	69,72	0,0190	0,0083	30,27	\$
'Copciac'	99,48	2,6141	38,05	99,48	0,8417	118,19	1,7754	67,91	0,0179	0,0085	33,34	1
'Coarnă albă'	78,47	2,0046	39,14	78,47	0,6246	125,63	1,2359	61,65	0,0158	0,0080	31,15	4
'Pino negru'	86'99	1,6700	40,10	86'99	0,5532	121,07	1,1168	28,99	0,0167	0,0083	33,12	1
'Feteasca neagră'	111,22	2,7182	40,91	111,22	0,9064	122,70	1,8118	99'99	0,0163	0,0082	33,34	2
'Aligote'	78,61	1,7644	44,55	78,61	0,5815	135,18	1,1829	67,04	0,0151	0,0074	32,95	3
'Şasla'	44,21	0,9180	48,16	44,21	0,2863	154,41	0,6317	68,82	0,0143	0,0065	31,18	5

приводит к уменьшению средней площади этих клеток.

Если во время засухи увеличивается частота устьиц на $1~{\rm mm^2}$ листовой пластинки, то это означает, что засуха более задерживает рост клеток и меньше – их деление.

Частота устьиц листовой пластинки у отдаленных гибридов винограда, изученных в 2012 году, варьирует от 119,83 устьиц/мм² у $DRX-M_{\varsigma}-14$ до 192,75 устьиц/мм² – у $DRX-M_{\varsigma}-502$ (Табл. 1). Частота адаксиальных эпидермальных клеток варьирует от 1113 клеток/мм² у $DRX-M_{\varsigma}-537$ до 2011 клеток/мм² – у $DRX-M_{\varsigma}-14$. Частота абаксиальных эпидермальных клеток варьирует от 2199 клеток/мм² у $DRX-M_{\varsigma}-578$ до 3020 клеток/мм² – у $DRX-M_{\varsigma}-502$.

Сопоставляя биометрические величины морфо-анатомических признаков листовой пластинки у отдаленных гибридов и у видов и сортов рода Vitis, выявили, что они вкладываются в пределах изменчивости признаков вида V. vinifera.

Исходя из данных Табл. 1 и Табл. 2, констатируем, что отдаленный DRX-M₅-17является самым засухоустой чивым из 10, изученных в 2012 году. Средняя площадь листовой пластинки у этого гибрида достигает 61,59 см²; частота устьиц – 186,12 устьиц/мм 2 ; масса воды – 0,8628 г (65,82 %); сухая масса – 0,4480 г (34,17 %); степень сочности листовой пластинки – 0,0140; степень склерофилии - 0,0073. К этой же категории засухоустойчивых отдаленных гибридов принадлежат DRX-M₄-578, DRX-M₄-580, DRX-M₅-20 (Табл. 1, 2).

Мезофилл расположен между адаксиальной и абаксиальной эпидермами пластинки листа и дифференцирован на палисадную паренхиму и губчатую паренхиму. Крупные коллатеральные проводящие пучки покрыты механической тканью, а мелкие проводящие пучки погружены в мезофилл и окружены одним или двумя слоями паренхимных клеток, которые образуют обкладку пучка.

Кристаллы оксалата кальция, в виде рафид, локализуются в более крупных клетках мезофилла (идиобластах). Клетки с рафидами

рассеяны среди паренхимных клеток губчатой ткани, на границе с палисадной тканью. Размеры рафид различны: их длина варьирует от 20 до 60 мкм, ширина – от 15 до 35 мкм.

Палисадная ткань состоит из одного ряда клеток, расположенных перпендикулярно к поверхности листовой пластинки. Средняя длина этих клеток варьирует в 2010 году от 50,90 мкм у сорта 'Шасла' до 68,20 мкм – у вида V. californica. Ширина палисадных клеток варьирует от 9 до 12-15 мкм. Только у сорта 'Изабелла' толщина (высота) палисадной паренхимы больше (74,40 мкм), чем толщина губчатой ткани (51,40 мкм) и, у этого сорта, толщина палисадной ткани является морфо-анатомическим качественным признаком засухоустойчивости винограда.

У всех других видов и сортов винограда, изученных в 2010 году и в 2012 году, средняя толщина палисадной паренхимы меньше, чем толщина губчатой ткани. Тотальная толщина листовой пластинки — это один из главных адаптивных признаков засухоустойчивости винограда, но это количественный морфо-анатомический признак.

Клетки палисадной паренхимы отличаются от клеток губчатой паренхимы по форме и величине. У палисадных клеток преобладает рост перпендикулярный к адаксиальной эпидерме. Клетки губчатой ткани растут в продольном направлении. Структурные особенности этих двух тканей мезофилла зависят и от топографии, и от ультраструктуры хлоропластов.

Губчатая ткань состоит из 5-7-9 рядов клеток, различающихся по форме и величине. В этой ткани различаем клетки округлые с диаметром 15-17 мкм; овальные с большим диаметром 25-35 мкм; удлиненно-овальные клетки с большим диаметром 40-60 мкм; тетрагональные клетки с размерами 25-30 мкм; лопастные клетки и клетки неправильной формы с разращениями, которые соединяют между собой. Топографические клетки контакты между клетками осуществляются горизонтальном плане, параллельно поверхности листовой пластинки. Зрелые клетки мезофилла очень вакуолизированы.

Межклеточные пространства в мезофилле имеют схизогенное происхождение.

Средняя толщина листовой пластинки у отдаленных гибридов винограда, изученных в 2012 году, варьирует от 221,89 мкм у $DRX-M_{_5}$ -14 до 174,09 мкм – у $DRX-M_{_4}$ -504 (Табл. 1). По данным литературы, бо́льшая толщина листовой пластинки является одним из главных адаптивных морфоанатомических признаков, которые определяют засухоустойчивость цветковых растений и винограда.

Средняя толщина листовой пластинки у видов и сортов винограда, изученных в 2010 году, варьирует от 211,36 мкм у местного сорта 'Topduh' до 170, 26 мкм – у вида $V.vulpina\ L.$

Группа видов винограда с бо́льшей засухоустойчивостью включает также виды V. monticola, V. romanetii, V. californica, V. solonis, V. silvestris, V. rupestris, которые имеют среднюю толщину листовой пластинки в пределах 190-210 мкм. К этой группе принадлежат и местные сорта 'Гордин', 'Копчак', 'Коарна нягрэ', 'Галбена де Одобешть', которые имеют среднюю толщину листовой пластинки больше, чемсорта 'Алиготе', 'Кишмишалбовал', 'Пино фран', оцененные в ампелографической литературе как засухоустойчивые.

Извидов винограда, изученных в 2012 году, отличается большей засухоустойчивостью V. californica (см. Табл. 3). Средняя площадь листовой пластинки этого вида — 36,26 см²; сухая масса листовой пластинки — 0,3595 г (37,61%); вода составляет 0,5963 г (62,38%) из свежей массы листовой пластинки; степень сочности — 0,0165; степень склерофилии — 0,0100; отношение средней площади сухой листовой пластинки к ее среднему объему — 100,86.

У вида *V. rupestris* средняя площадь листовой пластинки – 35,43 см²; сухая масса листовой пластинки – 0,2881 г (34,37 %); масса воды – 0,55 г (65,62 %); отношение S:V – 122,97; степень сочности – 0,0156; степень склерофилии – 0,0082.

Среди сортов *V. vinifera* высокой относительной засухоустойчивостью отличается *'Коарна нягрэ'*. У этого сорта

средняя площадь листовой пластинки – 81,25 см²; сухая масса листовой пластинки – 0,8730 г (31,36 %); отношение S:V сухой листовой пластинки – 93,07, самое малое, среди изученных в 2012 году, 5 видов и 10 сортов винограда. Степень сочности – 0,0236; степень склерофильности – 0,00108. Вода составляет 1,9104 г (68,63 %) из свежей массы листовой пластинки.

У сорта 'Копчак' средняя площадь листовой пластинки – 99,48 см²; сухая масса – 0,8417 г (33,34 %); масса воды – 1,7734 г (67,91 %); отношение S:V сухой листовой пластинки – 118,19; степень сочности – 0,0179; степень склерофилии – 0,0085. К этой группе засухоустойчивых сортов, по процентному соотношению сухой массы, принадлежат сорта 'Фетяска нягрэ', 'Алиготе', 'Шасла', 'Коарна албэ'. У сорта 'Коарна албэ' вода составляет всего 61,65 % из свежей массы листовой пластинки. Меньшее содержание воды характерно для более устойчивых к засухе сортов и видов винограда.

На базе выявленных 6 адаптивных признаков, разработан метод определения засухоустойчивости винограда по морфо-анатомическим признакам листовой пластинки.

Выводы

1. В результате изучения 21 морфо-анатомического признака листовой пластинки у 5 видов рода Vitis, 10 сортов вида V. vinifera и 10 отдаленных гибридов V. vinifera × M. rotundifolia, установлены 6 адаптивных признаков, которые определяют относительную засухоустойчивость винограда.

Более засухоустойчивыми являются виды, сорта и гибриды винограда, у которых: а) средняя толщина листовой пластинки больше; б) средняя площадь пластинки листа меньше; в) отношение средней площади сухой листовой пластинки к ее среднему объему меньше; г) сухая масса пластинки листа больше; д) степень сочности листовой пластинки и степень склерофилии больше.

2. Для абаксиальной эпидермы листовой пластинки видов, сортов и

отдаленных гибридов винограда характерны устьичные аппараты актиноцитного морфологического типа.

3. Установлена частота устьиц на $1~{\rm mm}^2$ листовой пластинки у $10~{\rm отдаленных}$ гибридов винограда. В $2012~{\rm году}$, частота устьиц варьировала от $119,83~{\rm устьиц/mm}^2$ у $DRX-M_s-14$ до $192,75~{\rm устьиц/mm}^2$ – у гибрида $DRX-M_s-502$.

Изучение частоты устьиц винограда актуально и полезно для виноградарства, потому что генотипы винограда, у которых частота устьиц меньше, являются более адаптированными к конкретным условиям жизни; а те генотипы, у которых значительно изменяется частота устьиц в год, следующий за засушливым, способны лучше адаптироваться к новым условиям жизни.

4. Частота клеток адаксиальной эпидермы листовой пластинки у отдаленных гибридов винограда варьирует от 1113 клеток/мм 2 у $DRX-M_4$ -641 до 2011 клеток/мм 2 – у $DRX-M_5$ -14. Частота клеток абаксиальной эпидермы варьирует от 2199 клеток/мм 2 у $DRX-M_4$ -578 до 3020 клеток/мм 2 – у $DRX-M_4$ -502.

У изученных отдаленных тибридов частота адаксиальных и абаксиальных эпидермальных клеток и их биометрические величины вкладываются в пределах изменчивости этих признаков у вида V.vinifera.

5. У видов, сортов и отдаленных гибридов винограда, на клеточном уровне, засуха отрицательно влияет на деление клеток и/или их растяжение. У *V. californica, V. champini, V. cinerea, V. lincecumii, V. rupestris* частота адаксиальных эпидермальных клеток на 0,25 мм² листовой пластинки в засушливом 2007 году меньше, чем в 2006 году. Это означает, что засуха отрицательно повлияла на деление клеток.

У видов V. silvestrii, V.solonis и у сортов 'Коарна нягрэ', 'Коарна албэ', 'Чиоркуца нягрэ' частота адаксильных эпидермальных клеток больше в засушливом 2007 году. Засуха оказала свое отрицательное воздействие на растяжение клеток.

Цитируемые источники

- Баранов П.А. 1946. Строение виноградной лозы. В кн.: Фролов-Багреев А.М. (ред.). Ампелография СССР, Т. 1: 217–346. Пищепромиздат, Москва
- **ВАСИЛЕВСКАЯ В.К. 1954.** Формирование листа засухоустойчивых растений. Изд-во Туркменской АН ССР, Ашхабад.
- **Жученко А.А. 1988.** Адаптивный потенциал культурных растений. Штиинца, Кишинев.
- **Крамер П.Д., Козловский Т.Т. 1983.** Физиология аревесных растений. Лесная промышленность, Москва.
- **Культиасов И.М. 1982.** Экология растений. МГУ, Москва.
- **НЕГРУЛЬ А.М. 1946.** Семейство Vitaceae Lindley (Ampelideae Kunth.) В кн.: ФРОЛОВ-БАГРЕЕВ А.М. (ред.). Ампелография СССР, Т. **1**: 45–132. Пищепромиздат, Москва.
- Петраш Д. 1986. Ампелометрический метод. В кн.: Тимуш А.И. (ред.). Энциклопедия виноградарства, Т. 1: 80. Главная редакция Молдавской Советской Энциклопедии, Кишинев.
- **ТРЕТЬЯКОВ Н.Н.** (ред.). 1990. Практикум по физиологии растений. Агропромиздат, Москва.
- **Эзау К. 1980.** Анатомия семенных растений. Книга 2. Мир, Москва.
- BURZO I., TOMA S., OLTEANU I., DCJEU L., DELIAN E., HOZA D. 1999. Fiziologia plantelor de cultură, Vol. 3. Fiziologia pomilor fructiferi şi a viței de vie. Ştiinţa, Chişinău.
- CHIRILEI H., GEORGESCU M., DOROBANŢU N. 1970.
 Fiziologia viţei de vie. În: CONSTANTINESCU GH. (red.), Ampelografia RSR, Vol. 1: 297–353. Editura ARSR, Bucureşti.
- CONSTANTINESCU GH., CIOCÂRLAN V., ALEXEI O. 1970. Sistematica familiei, Vitaceae. În: CONSTANTINESCU GH. (red.), Ampelografia RSR, Vol. 1: 219–295. Editura ARSR, , București.
- **CODREANU V. 2006.** Anatomia comparată a viței de vie (*Vitis* L.). Combinatul Poligrafic, Chișinău.
- CODREANU V. 2007. Anatomia epidermei frunzei la unele specii de viță de vie (Vitis L.). Studia Universitatis. Revistă științifică a USM. Seria "Științe ale naturii", Chişinău 2: 106–113.
- CODREANU V., SAVIN GH., CORNEA V., GRIGORAȘ V. 2008. Anatomia epidermei frunzei la unele soiuri de viță de vie Vitis vinifera L. Studia Universitatis. Revistă științifică a USM. Seria "Științe ale naturii", Chișinău 2: 60–69.
- CODREANU V. 2009. Structura anatomică a laminei frunzei ka unele specii de viță de vie. Studia Universitatis. Revistă științifică a USM. Seria "Științe ale naturii", Chișinău 2: 60–67.
- CODREANU V. 2011. Anatomia cantitativă a laminei

frunzei viței de vie. Structura și funcționalitatea sistemelor biologice – diversitate și universalitate. În memoriam academicianului Boris Matienco (Materialele conferinței științifice. La 17 noiembrie 2011, Chișinău, Republica Moldova): 29–32.

DÜRING H., SCIENZA A. 1980. Drought resistance

of some Vitis species and cultivars. Proc. 3rd Int. Symp. Grapevine Breeding (15-18 June 1980, Davis, California): 179–190.

JACKSON R.S. 2008. Wine Science. Principles and Applications. 3rd Edition. Academic Press, New York.

QUANTITATIVE ANATOMY OF GRAPEVINE (VITIS L.) LEAF BLADE

VALENTINE S. CODREANU

Abstract. Current investigations were conducted to clarify the features of grapevine which are adaptive to drought and can be used in selection and introduction of *Vitis* L. There are determined biometric values of 21 morpho-anatomic characters of leaf blade for 10 species of grapevine, 10 cultivars of *V. vinifera* L. and 10 distant hybrids *V. vinifera* × *Muscadinia rotundifolia* Michx. As a result of this study 6 leaf blade quantitative characters which determine relative grapevine drought resistance were described.

The most drought resistant species, sorts and hybrids of grapevine are that which have: a) greater average thickness of leaf blade; b) smaller surface (average area) of leaf blade; c) less ratio between average area and average volume of dried leaf blade; d) greater mass of dried leaf blade; e) higher degrees of the leaf succulence and sclerophylly.

Key words: Vitis, grapevine, anatomy, morphology, leaf blade, epidermis, parenchyma, stomata, drought resistance

Botanical Garden (Institute) of ASM, 18 Pădurii str., Chișinau, MD 2002, Republic of Moldova; gradinabotanica@moldnet.md; www.gradinabotanica.asm.md