POLLEN MORPHOLOGY OF SOME GERANIUM SUBGENUS ROBERTIUM SPECIES OF IRAN

M. Keshavarzi *, M. Behzadifar, Z. Nazem Bokaee

Abstract. Geranium (Geraniaceae) comprises more than 23 annual or perennial species in Iran. There is no study in Iran with pollen morphology emphasize. The main aim of this study is to find diagnostic pollen characters in studied species. Totally 40 accessions of five species (G. albanum, G. molle, G. purpureum, G. mascalense and G. pusillum) were collected. Pollen grains were studied by use of light and Scanning electron microscopy. To reveal the species relationships different multivariate statistical methods were used. The pollen grains were monad, isopolar, radially symmetric and of spheroid, prolate-spheroid or oblate-spheroid classes. The main ornamentation type was clavate, however reticulate but striate was also observed. All sections are clearly separated by their pollen features except of Batrachioidea which show confusion with Ruberta. Species relationship is discussed.

Key words: Geranium, Robertium, pollen morphology, Iran

Introduction

Geranium L. (Geraniaceae) comprises 423 species in the world which are grouped in 3 subgenera and 18 sections (Aedo et al. 1998). This genus contains more than 23 species in Iran. These are annual or perennial plants of different habitats in Iran (Schonbeck-Temesy 1970).

Yeo (1984) was the first who divided Geranium into three subgenera based on fruit discharge mechanism. In seed ejection type which is in concordance with subgenus Geranium, a single seed is actively discharged by the explosive recurvature of the awn, which remains together with the mericarp attached to the columella. The carpel projection type which is observed in subgenus Robertium (Picard) Rouy differs, the whole mericarp containing the seed is dispersed and awn remains with columella (Aedo et al. 1998). The fruit discharge method in subgenus Erodioidea (Picard) Yeo is identified as “Erodium-type”. In this case the mericarp, including the coiled awn, is propelled over a short distance.

In Geranium subgen. Robertium there are 8 sections and totally 30 species in the world. Pollen grains of 35 Asian Geranium species were previously studied by Park & Kim (1997). They used light microscopy and scanning electron microscopy to evaluate the classification and phylogenetic aspects of studied taxa. They found high variation in pollen size and exine sculpture.

Geraniaceae is a eurypalynous family which pollen grains for the first time have been studied by Bortenschlager (1967). Later Verhoeven & Venter (1986), Stafford & Blackmore (1991), Perveen & Gaiser (1999), and Shehata (2008) had studied pollen grains of different taxa in this family. Shehata (2008) pointed to different exine sculpture as reticulate- striate, gemmate- reticulate and reticulate in Geraniaceae. He believed that these features are of diagnostic importance.

In subg. Geranium, pollens are larger than in subg. Robertium and muri are more elaborated with fine lumens which strengthen the probability of reverse evolution in Asian elements of Geranium. There is no record of palynological study of Geranium species in Iran. The main aim of present study is to use the pollen grains features as a source of diagnostic characters to distinguish different Geranium species of subgenus Robertium.
Material and methods

The material used for this study was collected from wild populations and herbarium specimens (Tab. 1). The observations were made with an Olympus DP12 light microscopy, without any pretreatment. The measurements were based on at least 20 pollen grains per population. For SEM studies, the pollen grains suspended in a drop of water were directly transferred by a fine pipette to a metallic stub using double sided cello tape and then coated with gold in a sputtering chamber (Sputter Coater BAL-TEC, SCDOOOS). Coating with gold by the physical vapor deposition method (PVD) was restricted to 100 Å. The SEM examination was carried out on a TESCAN microscope. The terminology of Hesse et al. (2009) for pollen sculptures was followed.

The characters of pollen grains of the studied Geranium species are summarized in Tabs 2 & 3. In order to detect significant differences in the studied characters among the various studied species, an analysis of variance (ANOVA) was performed. To reveal the species relationships, we have used cluster analysis and principal component analysis (PCA) (Ingrouille 1986). For multivariate analysis, the mean of the quantitative characters was used. Qualitative characters were coded as binary or multistate. Variables were standardized for multivariate statistical analysis. Average taxonomic distances and squared Euclidean distances were applied as dissimilarity coefficient in the cluster analysis of pollen data. In order to determine the most variable characters among the studied species, factor analysis based on principal components analysis was performed. SPSS ver. 20 and PAST ver. 2.17c (2013) softwares were used for statistical analysis.

Results

The pollen grains of studied Geranium species are monad, isopolar and radially symmetric. They are of spheroid, prolate-spheroid or oblate-spheroid class. Light micrographs of pollen grains were similar (Fig. 1), therefore scanning electron micrographs were studied to find more differences. All studied taxa were tricolporate. The colpi were short and linear. The basic ornamentation of the studied Geranium species was clavate-reticulate or baculate-reticulate, but striate ornamentation was also observed (Figs 2 & 3).

G. albanum showed two parted wart-like sculptures while G. mascatense showed very different exine sculpture in studied taxa with striate type of ornamentations.

In order to define the diagnostic value of pollen grains in species delimitations in studied Geranium species, cluster analysis by Ward’s method were performed on the base of 14 qualitative and quantitative features (Fig. 4). As studied species represent each of the sections, it is evident in cluster pattern that all sections are clearly separated except Batrachioidea which show confusion with Ruberta. G. mascatense and G. albanum comprise a separate cluster with more similarity in their pollen features.

Factor analysis revealed that there were three factors provided more than 78% of total observed variation in studied pollen grains. Studying the component matrix for each factors it was evident that colpus length and equatorial shape are most important features in the first factor and aperture orientation, while homogeneity of pollen sculpture and exine thickness – in the second factor. In the third factor only equatorial length is responsible for more than 19% of observed variation. PCO based on qualitative and quantitative features of pollen grains (Fig. 5) confirms the results of cluster analysis by Ward’s method.

Discussion

Analysis has shown that G. albanum had the largest, while G. molle had the smallest pollen grains (Tab. 3). Although Deniz et al. (2013) believed that there was no significant difference between the sections in terms of pollen grains, but studied species of present
Tab. 1. Vouchers of *Geranium* species used in this study. Vouchers are deposited at Herbarium of Alzahra University.

<table>
<thead>
<tr>
<th>Section</th>
<th>Species</th>
<th>Voucher specimen</th>
</tr>
</thead>
</table>
| **Batrachioidea WD.J.** | *G. molle* L. | 1. Mazandaran: Chalous, Shariatabad Village, Nataj 350AUH
2. Tehran: Damavand to Roudehen, Veskareh Village, Ghasemian 352AUH
3. Mazandaran: Sari to Ghaemshahr, Seydi 353AUH
4. Golestan: Gorgan, Naharkhoran Jungle, Soleimani 354AUH
5. Mazandaran: Ghaemshahr, Fasahat & Rezaei 355AUH
6. Guilan: Saravan Forest, Mohamadjani, 356 AUH
7. Mazandaran: Babolsar, Sari road km 5, Rezapour 357AUH
8. Mazandaran: Kelardasht, Bayat 258AUH
9. Golestan: Gorgan, Motalebi 359AUH
10. Khuzestan: Dezful, Near Dez river, Bagheri 360AUH
11. Mazandaran: Ghaemshahr, Jamshidi 361AUH
12. Guilan: Lahijan district, Pedram 362AUH
13. Mazandaran: Ghaemshahr, Talar Forest, Cheniani 363AUH
14. Mazandaran: Babolsar, Sari to Babolsar road, km 5, Rezapour 364AUH
15. Mazandaran: Amol, Siahbishe Forest, Behzadifar & Pourabdollah 365AUH
| **G. pusillum** L. | | 17. Mazandaran: Javaherdeh, Mosaferi 367AUH
18. Guilan: Jirandeh, Keshavarzi 368 AUH
19. Guilan: Khalesar, Behzadifar 369 AUH |
| **Divaricata Rouy** | *G. albanum* M. Bieb. | 20. Golestan: Ziarat, Pakravan 370AUH
22. Mazandaran: Amol, Siabishe to Chalous road, Behzadifar & Pourabdollah 373AUH
23. Mazandaran: Jirandeh, Keshavarzi 372AUH |
| **Trilopa Yeo** | *G. mascatense* Boiss. | 24. Fars: Kazeroun, Keshavarzi, 375AUH
25. Khuzestan: Dezful, Keshavarzi, 376AUH |
27. Mazandaran: Ramsar, Javaherdeh, Gholizadeh 378AUH
28. Guilan: Langeroud, Mehrvarz 379AUH
29. Mazandaran: Ramsar, Tavakoli 380AUH
30. Mazandaran: Ramsar, Irani 381AUH
31. Mazandaran: Chalous, Shariat abad Village, Nataj 382AUH
32. Golestan: Minodasht, Alfajr Village, Habibi 383AUH
33. Guilan: Anzali, Mohamadjani 384AUH
34. Tehran: Darband, Baghaipour 385AUH
35. Tehran: Darband, Mohamadjani 386AUH
36. Tehran: Darband, Keshavarzi 387AUH, 388AUH
37. Golestan: Gorgan, Ghorogh forest, Mosaferi 389AUH
38. Guilan: Baharestan forest, Behzadifar & Pourabdollah 390AUH
39. Guilan: Gisom forest, Donya jan to Kharmakin, Behzadifar & Pourabdollah 391AUH
40. Mazandaran: Siahbishe to Chalous, Behzadifar & Pourabdollah 392AUH |
Fig. 1. Light micrographs of pollen grains in studied *Geranium* species: A – G. molle; B – G. pusillum.
Fig. 2. Pollen micrographs of Geranium species: A-C – G. albanum; D-F – G. mascatense. A, D – equatorial view; B, E – polar view; C, F – exine sculpture.

project showed that elements of each section are clearly separated by use of selected set of features.

As was pointed by Shehata (2008) for the pollen morphology of Geraniaceae family in Egypt, one of different ornamentation types in Geraniaceae is striate and in present study the G. mascatense show striate type while others showed clavate-reticulate or baculate-reticulate types. G. albanum and G. molle showed tactate tectum but other had semitectate one.

Deniz et al. (2013) mentioned spheroidal-subprolate shape for G. pusillum while in present study prolate spheroidal shape was observed. Shehata (2008) in his studies on pollen morphology of the Geraniaceae identified some types by use of exine ornamentation features viz striate/striate-reticulate, reticulate/gemmate, and reticulate. He described prolate spheroidal pollen grains in G. molle which is in concordant with findings of the present study. Analysis has shown that the pollen grains of all studied Geranium species are tricolporate.

Previous study showed that G. purpureum is separated from other species morphologically by having glandular hairs in inflorescence with colorless stalks and red gland. G. albanum has a discharge mechanism as inoperative but molle and G. pusillum has an operative one with blue pollen while operative mechanism is accompanied by not carinate calyx is the characteristic of G. mascatense. As it is evident in PCO graph species are clearly separated by their pollen features. Further studies are needed to reveal the morphologically similar species.

References

Fig. 4. Cluster analysis (Ward’s method) based on pollen features of *Geranium*.

Fig. 5. PCO plot of *Geranium* species based on observed pollen data.

