RESEARCH ARTICLE

Comparative study of foliage leaf and bract leaf anatomy of six species of Cyperus L. (Cyperaceae) from West Bengal

Tanmoy Mallick, Asok Ghosh*
Taxonomy and Biosystematics Laboratory, UGC-CAS Department of Botany, The University of Burdwan, Golapbag, 713104, Burdwan, West Bengal, India; *asokcarex@gmail.com, asokcarex@rediffmail.com

Received : 2.10.2018| Accepted: 14.11.2018| Published: 16.11.2018

Abstract

Six species of Cyperus L. are anatomically characterized in an attempt to identify diagnostic characters and to find out the possible relationship among the studied species. From the present study, we observed that some anatomical features are alike to all the studied species (such as foliage leaf bulliform cell layer, form of foliage leaf sclerenchyma, bract leaf bulliform cell layer, form of bract leaf sclerenchyma and position of sclerenchyma in relation to vascular bundle in bract leaf), while others characters (like minor vascular bundle position in foliage leaf and bract leaf, foliage leaf epidermis layer, transverse septum between aerenchyma etc.) are variable. The studied taxa were separated on the basis of 14 inter-specifically variable characters (these are, presence of air cavities in foliage leaf, major vascular bundles position in relation to air cavities in foliar leaf, presence of minor vascular bundle, morphology of foliage leaf blade margins, total number of bulliform cells in foliage leaf, foliage leaf mestome sheaths form, angle of foliage leaf margin, bract leaf air cavities, major vascular bundles position in relation to air cavities in bract leaf, presence of minor vascular bundle in bract leaf, bract leaf blade margin morphology, bract leaf mestome sheaths form, depth of keel in bract leaf, maximum thickness at one half middle of bract leaf). The key to the identification of the studied taxa is also prepared from anatomical data.

Keywords: Anatomy, Cyperaceae, Cyperus, Foliage leaf, Bract leaf, Phenogram

Introduction

With 109 genera and ca. 5500 species (Muasya et al. 2009), Cyperaceae is the third largest family among monocots (Lunkai et al. 2010). Comprising with about 600 species, Cyperus L. is the second largest genus of this family (Kukenthal 1936; Rad \& Sonboli 2008). Approximate 70 species of Cyperus reported from India (Prasad \& Singh 2002).

Due to morphological similarities and highly reduced flowers, the members of this family are quite difficult to identify (Reznicek 1990; Starr et al. 1999). So it is a major
concern to find out the additional diagnostic features for identification of the members.

The oldest and most comprehensive anatomical study of this family was conducted by Metcalfe (1971), comprising the anatomy of the leaves and stems of 280 species belonging to 90 genera, among them 18 species of Cyperus had been presented.

Several studies have demonstrated the utility of anatomical characters in the taxonomy of closely related species. For example, Govindarajalu (1974) employed anatomical characters to separate three subgenera of Cyperus. Similarly, Reznicek \& Catling (1986) established the role of vegetative morphology and anatomy in the

[^0]taxonomy of Carex (Cyperaceae). Importance of anatomical study for taxonomy was emphasized by Standley (1990), who used anatomy of leaves for the taxonomical and phylogenetic classification within the genusCarex.Asper Hejazietal.(2012)micro-morphological characters, especially qualitative characters are useful for Carex (Cyperaceae) identification. Based on the qualitative and quantitative morpho-anatomical characters Plunkett et al. (2013) recognized new species of Lepidosperma (Cyperaceae) from the mountain of Tasmania. Three species of Mapania (Cyperaceae) were taxonomically distinguished by Silva et al. (2014) based on basal leaf and involucral bract anatomy. Pashirzad et al. (2014) used morphological and nut micro-morphological data in identification of Iranian Cyperus.
Evaluation of the genus Cyperus in relation to the foliage leaf and bract leaf anatomical trait is still unknown. The present study aimed to identify the anatomically diagnostic character and find out the possible phenetic relationship based on foliage leaf and bract leaf anatomy of studied species, collected from of Burdwan (23.4595° N, $87.6186^{\circ} \mathrm{E}$) and Nadia ($23.4710^{\circ} \mathrm{N}, 88.5565^{\circ} \mathrm{E}$) district, West Bengal.

Materials and Methods

Three specimens of Cyperus difformis L., Cyperus rotundus L.; two of Cyperus imbricatus Retz., Cyperus michelianus subsp. pygmaeus (Rottb.) Asch. \& Graebn and one of Cyperus cyperoides (L.) Kuntze, Cyperus iria L. were collected from three different locations (such as Churnipota ($23.3903^{\circ} \mathrm{N}$, $88.4486^{\circ} \mathrm{E}$), Golapbag ($23.2521^{\circ} \mathrm{N}, 87.8434^{\circ} \mathrm{E}$), Nabagram ($23.1136^{\circ} \mathrm{N}, 88.0578^{\circ} \mathrm{E}$) for anatomical study. To minimize the risk, we collected two ramets for each sample from the same site.
The herbarium specimens were deposited at Burdwan University Herbarium (BURD), Department of Botany, West Bengal, India. Collection details are given in Tab. 1.
A fully developed foliage leaf and largest bract leaf were removed and placed in Formalin-Aceto-Alcohol (FAA),
from which sections of each leaf organ were made. Leaves were hand sectioned with a razor blade and sections were cleared in Lactic acid (50\%). After that, the sections were stained with Safranine (0.1%) if needed. Then the section was mounted by Glycerol (10%). The mounted semi-permanent slides were micro-photographed with Leica DC295 attached with Leica DM1000 microscope and photographs were analyzed by using Digimizer (ver. 4.3.0), an image analyzing software.

Fifty qualitative characters (Tab. 2.) of collected samples were compared and phenetic similarity was also determined using Past 3.14. The terminologies used to describe the anatomy of leaves were adopted from Metcalfe (1971), Bruhl (1995) \& Bugg et al. (2013).

Result and Discussion

The result obtained from the cluster analysis (Fig. 1.) indicate that six species grouped in two major clusters (A and B) based on two characters, i.e. angle of foliage leaf margin and transverse septum morphology in bract leaf. The first cluster consisted of three species including C. cyperoides, C. iria, and C. michelianus subsp. pygmaeus while the other cluster, consisting of C. difformis, C. imbricatus, and C. rotundus. The analysis indicates that foliage leaf bulliform cells layer, foliage leaf sclerenchyma form, bract leaf bulliform cells layer, bract leaf sclerenchyma form and position of sclerenchyma in relation to vascular bundle in bract leaf are uniform across the studied species.
In cluster A (Fig. 2.), C. cyperoides (Fig. 3. J-L and Fig. 4. D-F) (can be distinguished from C. iria (Fig. 4. G-H and Fig. 5. D-E) and C. michelianus subsp. pygmaeus (Fig. 4. B-C and Fig. 5. A-C) on the basis of foliage leaf blades maximum width, foliage leaf to bract leaf length ratio, total number of vascular bundles in foliage leaf, foliage leaf blade margins morphology, depth of keel in foliage leaf, bract leaf blades maximum width, bract leaf air cavities, major vascular bundles position in relation to air cavities in bract leaf, major vascular bundles position in

Table 1. Collection details of the studied species.

Name of the species	Accession No	Collection site with coordination	Collection date
Cyperus imbricatus Retz.	BURD12019	Churnipota $\left(23.3903^{\circ} \mathrm{N}, 88.4486^{\circ} \mathrm{E}\right)$	$23-04-2017$
	BURD12029	Golapbag $\left(23.252^{\circ} \mathrm{N}, 87.8434^{\circ} \mathrm{E}\right)$	$25-05-2017$
Cyperus difformis L.	BURD12020	Churnipota $\left(23.3903^{\circ} \mathrm{N}, 88.4486^{\circ} \mathrm{E}\right)$	$23-04-2017$
	BURD12028	Golapbag $\left(23.2521^{\circ} \mathrm{N}, 87.8434^{\circ} \mathrm{E}\right)$	$25-05-2017$
	BURD12031	Nabagram $\left(23.1136^{\circ} \mathrm{N}, 88.0578^{\circ} \mathrm{E}\right)$	$15-06-2017$
Cyperus rotundus L.	BURD12021	Churnipota $\left(23.3903^{\circ} \mathrm{N}, 88.4486^{\circ} \mathrm{E}\right)$	$23-04-2017$
	BURD12024	Golapbag $\left(23.2521^{\circ} \mathrm{N}, 87.8434^{\circ} \mathrm{E}\right)$	$25-05-2017$
Cyperus michelianus subsp. pygmaeus	BURD12040	Nabagram $\left(23.1136^{\circ} \mathrm{N}, 88.0578^{\circ} \mathrm{E}\right)$	$15-06-2017$
(Rottb.) Asch. \& Graebn.	BURD12025	Golapbag $\left(23.2521^{\circ} \mathrm{N}, 87.8434^{\circ} \mathrm{E}\right)$	$25-05-2017$
Cyperus cyperoides (L.) Kuntze	BURD12042	Nabagram $\left(23.1136^{\circ} \mathrm{N}, 88.0578^{\circ} \mathrm{E}\right)$	$15-06-2017$
Cyperus iria L.	BURD12030	Golapbag $\left(23.252^{\circ} \mathrm{N}, 87.8434^{\circ} \mathrm{E}\right)$	$25-05-2017$

Table 2. Foliage leaf and bract leaf characters with character states of collected samples.

Foliage leaf blades (maximum length)
1 1. More than 10 cm ;
2. Less than 10 cm

Foliage leaf blades (maximum width in middle)
2 1. More than 2 mm ;
2. 2 mm or less than 2 mm

Foliage leaf to bract leaf length ratio 1.Less than 1:1;
3 2.1:1;
3. More than 1:1

Foliage leaf to bract leaf width ratio 1. Less than $1: 1$;
4 2.1:1;
3. More than 1:1

Foliage leaf blade trans-section (in middle)
5 1. V-shaped;
2. Flanged V-shaped (includes inversely W-shaped)

Total number of vascular bundles in foliage leaf
6 1. More than 50;
2. Less than 50

Presence of air cavities in foliage leaf
7 1. Present;
2. Absent

Major vascular bundles position in relation to air cavities in foliar leaf
8 1. Alternate;
2. Absent

Major vascular bundles position in foliage leaf

1. Closer to abaxial surface;
2. More or less middle;
3. Closer to adaxial surface

10 Presence of minor vascular bundles 1. Present;
0 2. Absent
Minor vascular bundles position in foliage leaf

1. Closer to abaxial surface;

11 2. More or less middle;
3. Closer to adaxial surface;
4. Not applicable

Total number of bulliform cells in foliage leaf
12 1. More than 7;
2. Less than 7

Foliage leaf bulliform cells morphology
13 1. Similar to epidermal cells;
2. Dissimilar to epidermal cells

Foliage leaf bulliform cells layer
14 1. Single layered;
2. Multiple layered

Foliage leaf blade margins morphology
15 1. Armed with prickle-hairs;
2. Without prickle-hairs

Foliage leaf epidermis layer

1. Continuously single-layered;
2. Continuously bi- layered;
3. mixed

17 Foliage leaf mestome sheaths form 1. Chlorenchymatous;
7 2. Non-chlorenchymatous
Foliage leaf sclerenchyma form

1. Forming strands (above and/or below the vascular bundles);
2. Forming (adaxial and/or abaxial) girders;
3. Forming caps (above and/or below the vascular bundles)

Depth of keel in foliage leaf
19 1. More than $300 \mu \mathrm{~m}$;
2. Less than $300 \mu \mathrm{~m}$

Ratio of adaxial to abaxial epidermal cells in foliar leaf
20 1. More than 3:1;
2. Less than $3: 1$

Position of sclerenchyma in relation to vascular bundles in foliage leaf
21 1. Opposite;
2. Alternate and opposite

Angle of foliage leaf margin
22 1. More than 60°;
2. Less than 60°

23 Angle of foliage leaf keel at adaxial side 1 . More than 90°; 2. Less than 90°
Angle of foliage leaf keel at abaxial side
24 1. More than 90°;
2. Less than 90°

Maximum thickness at one half middle of foliage leaf
25 1. More than $300 \mu \mathrm{~m}$;
2. Less than $300 \mu \mathrm{~m}$

Transverse septum between air chamber in foliage leaf

1. Bicellular;

26 2. Multicellular;
3. Heterogenous;
4. Absent
${ }_{27}$ Bract leaf blades (maximum length) 1. More than 10 cm ;
2. Less than 10 cm

Bract leaf blades (maximum width in middle)
28 1. More than 2 mm ;
2. 2 mm or less than 2 mm

Bract leaf blade trans-section (in middle)
29 1. V-shaped;
2. Flanged V-shaped (includes inversely W-shaped, and plicate)

30 Total number of vascular bundles in bract leaf
Bract leaf air cavities
31 1. Present;

2. Absent

Major vascular bundles position in relation to air cavities in bract leaf
2 1. Opposite;
2. Alternate;
3. Not applicable

Major vascular bundles position in bract leaf
33 1.Closer to abaxial surface;
33 2. More or less middle;
3. Closer to adaxial surface

Presence of minor vascular bundle in bract leaf
34 1. Present;
2. Absent

Minor vascular bundles position in bract leaf
1.Closer to abaxial surface;

35 2. More or less middle;
3. Closer to adaxial surface;
4. Not applicable

Total number of bulliform cells in bract leaf
36 1. More than 7;
2. Less than 7

37 Bract leaf bulliform cells morphology 1. Similar to epidermal cells;
2. Dissimilar to epidermal cells

Bract leaf bulliform cells layer

1. Single layered;
2. Doubled layered;
3. Multiple layered

39 Bract leaf blade margin morphology 1. Armed with prickle-hairs;
39 2. Without prickle-hairs
Bract leaf epidermis layer
40 1. Continuously single layered; 2. Continuously double layered; 3. Mixed

Bract leaf mestome sheaths form
41 1. Chlorenchymatous;
2. Non-chlorenchymatous
$\begin{array}{llllllllllll}1 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 2 & 2 & 1 & 2\end{array}$
$\begin{array}{llllllllllll}1 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 2 & 2 & 1 & 2 \\ 1 & 1 & 1 & 2 & 2 & 1 & 1 & 1 & 2 & 1 & 1 & 2\end{array}$
$\begin{array}{llllllllllll}1 & 1 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$

1	1	1	1	1	1	1	1	2	2	2	2

1	2	2	1	2	1	1	1	1	2	1	2

$\begin{array}{llllllllllll}1 & 1 & 2 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2\end{array}$
$\begin{array}{llllllllllll}1 & 1 & 1 & 1 & 2 & 2 & 1 & 2 & 2 & 2 & 2 & 2\end{array}$
$\begin{array}{llllllllllll}2 & 2 & 2 & 2 & 2 & 1 & 3 & 3 & 4 & 3 & 2 & 3\end{array}$
$\begin{array}{llllllllllll}1 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1\end{array}$

1	1	2	1	2	2	1	2	2	2	1	2

1	2	1	1	1	2	2	2	1	1	1	1
1	1	2	2	2	2	1	1	2	1	1	2

1	1	1	1	1	2	2	2	2	2	1	2

$\begin{array}{llllllllllll}2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 2 & 3\end{array}$
$\begin{array}{llllllllllll}3 & 3 & 2 & 2 & 1 & 2 & 2 & 2 & 2 & 2 & 1 & 2\end{array}$
$\begin{array}{llllllllllll}3 & 3 & 4 & 4 & 4 & 2 & 2 & 2 & 2 & 2 & 1 & 1\end{array}$
$\begin{array}{lllllllllllll}2 & 1 & 2 & 1 & 2 & 1 & 1 & 1 & 2 & 1 & 1 & 2\end{array}$ $\begin{array}{llllllllllll}1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2\end{array}$ $\begin{array}{llllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ $\begin{array}{llllllllllll}1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 2\end{array}$ $\begin{array}{llllllllllll}1 & 1 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 1 & 3 & 1\end{array}$ $\begin{array}{llllllllllll}1 & 1 & 2 & 2 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$

Bract leaf sclerenchyma form

1. Forming strands (above and/or below the vascular bundles);

42 2. Forming (adaxial and/or abaxial) girders;
3. Forming caps (above and/or below the vascular bundles)

Depth of keel in bract leaf
43 1. More than $300 \mu \mathrm{~m}$;
2. Less than $300 \mu \mathrm{~m}$

Angle of bract leaf margin
44 1. More than 60°;
2. Less than 60°

Ratio of adaxial to abaxial epidermal cells in bract leaf
45 1. More than 3:1;
2. Less than $3: 1$

Position of sclerenchyma in relation to vascular bundle in bract leaf
46 1. Opposite;
2. Alternate

Angle of keel at adaxial side of bract leaf
47 1. More than 90°;
2. Less than 90°

Angle of keel at abaxial side of bract leaf
48 1. More than 90°;
2. Less than 90°

Transverse septum between air chamber in bract leaf

1. Absent;

49 2. Bicellular;
3. Multicellular;
4. Heterogenous

Maximum thickness at one half middle of bract leaf
50 1. More than $300 \mu \mathrm{~m}$;
2. Less than $300 \mu \mathrm{~m}$

Figure 1. Transverse section of follage leaf, Cyperus rotundus: one half portion of lamina showing bulliform cells (BC), air chamber (AC), lower epidermal cell (LEC), transverse septum between air chambers (TS), upper epidermal cells (UEC), major vascular bundle (MVB), sclerenchyma cells (SC); angle of the leaf margin (AM), angle of the keel at a abaxial side (ABK).

Figure 2. Phenogram resulting from cluster analysis of six species of Cyperus using Ward's method and correlation similarity index, Coph. Corr. 0.8741 (Table 2 for characters and character states).

Figure 3. A-C trans-section of foliage leaf of Cyperus imbricatus showing keel region, middle portion and marginal portion; D-F transsection of foliage leaf of C. rotundus showing keel region, middle portion and marginal portion; G-I trans- section of foliage leaf of C. difformis showing keel region, middle portion and marginal portion; J-L trans-section of bract leaf of C. cyperoides showing keel region, middle portion and marginal portion. (dok-depth of the keel, bc-bulliform cell, mvb-major vascular bundle, nvb-minor vascular bundle, adec- adaxial epidermal cell. abec- abaxial epidermal cell, ac-air chamber, scsclerenchyma).
bract leaf, bract leaf blade margin morphology, and angle of keel at adaxial side of bract leaf (Tab. 2.).
In cluster B, C. imbricatus (Fig. 3. A-C and Fig. 5.F-H) and C. rotundus (Fig. 3. D-F and Fig. 5. I-K) forms a subgroup of C. difformis (Fig. 3. G-I and Fig. 4. A, and Fig. 5. L). The separable characters of the species are presence minor vascular bundles, minor vascular bundles position in foliage leaf, foliage leaf mestome sheaths form, presence of minor vascular bundles in bract leaf, minor vascular

Figure 4. A trans section of bract leaf of Cyperus difformis showing marginal to middle portion; B-C trans-section of bract leaf of C. michelianus subsp. pygmaeus showing keel region, a middle portion, and marginal portion; D-F trans-section of bract leaf of C. cyperoides showing keel portion, middle portion to marginal portion; G-H transsection of bract leaf of C. iria showing keel portion to middle portion and middle portion to marginal portion. (bc-bulliform cell, mvb-major vascular bundle, nvb- minor vascular bundle, ad-adaxial epidermal cll, adec-abaxial epidermal cell, ac-air chamber, sc-sclerenchyma, tvsptransverse septum between air chambers, alm-anglr of leaf margin, priprickle hair base, msc - mestome sheath).

Figure 5. A-C trans-section of foliage leaf of Cyperus michelianus subsp. pygmaeus showing keel portion, middle portion and marginal portion; D-E trans-section of foliage leaf of C.iria showing keel portion to middle portion and middle portion to marginal portion; F-H trans-section of foliage leaf of C. imbricatus showing keel portion, middle portion and marginal portion; I-K trans-section of foliage leaf of C. rotundus showing keel portion, middle portion and marginal portion; L transsection of foliage leaf of C. difformis showing keel portion, (aabkl- angle of keel at abaxial side, bc- bulliform cell, mvb-major vascular bundle, nvb-minor vascular bundle, abec- adaxial epidermal cell, abec-abaxial epidermal cell, ac- air chamber, sc-sclerenchyma, aadkl-depth of the keel at adaxial side, tvsp-transverse septum between air chambers, alm-angle of leaf margin, msc- mestome sheath).

Table 3 (suppl). Foliage leaf and bract leaf characters with character states of collected samples.

운	CHARACTERS				E 0 0 0 0 0							$\begin{aligned} & y \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$$
				N N N N ले	N्N N N ल N		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\sim} \\ & \stackrel{\sim}{\sim} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \text { N } \\ & \text { O} \\ & \underset{\sim}{\sim} \end{aligned}$		$\begin{aligned} & \text { N్ } \\ & \text { N } \\ & \text { N} \\ & \stackrel{\sim}{\sim} \end{aligned}$	N N N N $\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { O} \\ & \stackrel{N}{N} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \text { O్ } \\ & \stackrel{N}{N} \\ & \stackrel{1}{0} \\ & \stackrel{\sim}{2} \end{aligned}$
1	Foliage leaf blades (maximum length (in cm)	$\begin{aligned} & \stackrel{\sim}{\mathrm{M}} \\ & \hline \end{aligned}$	مٌ	\pm	$\begin{aligned} & \text { مٌ } \\ & \hline 1 \end{aligned}$	「	مٌ	$\stackrel{\infty}{\infty}$	$\stackrel{\bullet}{\square}$	$\stackrel{\text { 「 }}{*}$	$\stackrel{\infty}{\sim}$	$\stackrel{\text { N }}{\sim}$	$\stackrel{\square}{\bigcirc}$
2	Foliage leaf blades (maximum width (in mm) in mid-point)	∇	*	$\stackrel{+}{*}$	m	N	N	m	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\square}$	-	m	N
3	Foliage leaf (lamina) to bract leaf length ratio 1. Less than 1:1 2. 1:1 3. More than 1:1	\sim	m	-	-	-	-	-	-	m	m	-	\cdots
4	Foliage leaf (lamina) to bract leaf width ratio 1. Less than 1:1 2. 1:1 3. More than 1:1	m	\sim	-	\sim	\sim	\sim	\sim	-	m	\sim	\sim	\sim
5	Foliage leaf blade trans-section (middle) 1. 'V-shaped' 2. 'flanged V-shaped' (includes inversely W-shaped, and plicate)	-	-	-	-	-	\sim	N	\sim	-	-	-	\sim
6	Total number of vascular bundles (major + minor) in foliage leaf	$\bar{\infty}$	¢	$\stackrel{\square}{\sim}$	$\stackrel{\square}{\square}$	F	$\underset{\sim}{9}$	$\stackrel{\infty}{\sim}$	\bigcirc	~	$\underset{\sim}{ }$	8	\bigcirc
7	Foliage leaf air cavities (whether present) 1. present 2. absent	-	-	\checkmark	\checkmark	\checkmark	-	-	-	\sim	\sim	\sim	\checkmark

Major vascular bundles position in relation to parenchyma in foliar leaf
8 1. Alternate
2. Not applicable

Major vascular bundles position in foliage leaf
9 1. Closer to abaxial surface.
9 2. More or less middle.
3. Closer to adaxial surface

10 Minor vascular bundles 1. Present
2. Absent

Minor vascular bundles position in foliage leaf

1. Closer to abaxial surface.

11 2. More or less middle.
3. Closer to adaxial surface
4. Not applicable

12 Total number of bulliform cells in foliage leaf
Foliage leaf bulliform cells morphology
13 1. Similar to epidermal cells.
2. Dissimilar to epidermal cells.

14 Foliage leaf bulliform cells layer 1 . Single layered
2. Multiple layered

Foliage leaf blade margins (whether armed with prickle-hairs)
15 1. Armed with prickle-hairs
2. without prickle-hairs

16 Foliage leaf epidermis layer 1. Continuously single-layered
Foliage leaf mestome sheaths (primary bundles; whether
17 chlorenchymatous)

1. chlorenchymatous
2. 'non-chlorenchymatous' (never with abundant chloroplasts)

Foliage leaf sclerenchyma (form)
18 1. Forming strands (above and/or below the vascular bundles)
2. Forming (adaxial and/or abaxial) girders
3. forming caps (above and/or below the vascular bundles)

19 Depth of keel in foliage leaf (in $\mu \mathrm{m}$)

20 Ratio of adaxial to abaxial epidermal cells in foliar leaf
Position of sclerenchyma in relation to vascular bundle in foliage leaf
21 1.opposite
2.alternate and opposite

22 Angle of foliage leaf margin $\left({ }^{\circ}\right)$

23 Angle of keel at adaxial side $\left({ }^{\circ}\right)$

24 Angle of keel at abaxial side(${ }^{\circ}$)

25 Maximum thickness at one half middle (in $\mu \mathrm{m}$)
Transverse septum

1. Bicellular

26 2. Multicellular
3. Heterogenous
4. Absent

27 Bract leaf blades (maximum length (in cm))
28 Bract leaf blades (maximum width (in mm) in mid-point) Bract leaf blade trans-section (middle)
29 1. 'V-shaped' (with or without a median adaxial groove) 2. 'flanged V -shaped' (includes inversely W-shaped, and plicate)

30 Total number of vascular bundles (major + minor) in bract leaf Bract leaf air cavities (whether present)
31 1. present 2. absent

Major vascular bundles position in relation to aerenchyma in bract leaf 1. Opposite 2. Alternate 3. Not applicable

Major vascular bundles position in bract leaf

1. Closer to abaxial surface.
2. More or less middle.
3. Closer to adaxial surface.

Minor vascular bundle
34 1. Present
2. absent

Minor vascular bundles position in bract leaf

1. Closer to abaxial surface.

35 2. More or less middle.
3. Closer to adaxial surface.
4. Not applicable

36 Total number of bulliform cells in bract leaf
Bract leaf bulliform cells morphology
37 1. Similar to epidermal cells.
2. Dissimilar to epidermal cells.

Bract leaf bulliform cells layer
38 1. Single layered
2. Doubled layered
3. Multiple layered

Bract leaf blade margins (whether armed with prickle-hairs)
39 1. Armed with prickle-hairs
2. without prickle-hairs

Bract leafepidermis layer (whether present)
40 1. continuouslysingle-layered
2.continuously double layered
3. mixed

Bract leaf mestome sheaths (primary bundles; whether
lorenchymatous)

1. chlorenchymatous
2. 'non-chlorenchymatous' (never with abundant chloroplasts)

Bract leaf sclerenchyma (form) 1. Forming strands (above and/or
below the vascular bundles)
2. Forming (adaxial and/or abaxial) girders
3. forming caps (above and/or below the vascular bundles)

Depth of keel in bract leaf (in $\mu \mathrm{m}$)

44 Angle of bract leaf margin $\left({ }^{\circ}\right)$

45 Ratio of adaxial to abaxial epidermal cells in bract leaf
Position of sclerenchyma in relation to vascular bundle in bract leaf
46 1.opposite
2.alternate

47 Angle of keel at adaxial side $\left({ }^{\circ}\right)$

Angle of keel at abaxial side $\left({ }^{\circ}\right)$
Transverse septum 1. Absent
2. Bicellular
3. Multicellular
4. Heterogenous

50 Maximum thickness at one half middle (in $\mu \mathrm{m}$)
bundles position in bract leaf and bract leaf mestome sheaths form (Tab. 2).
Foliage leaf to bract leaf width ratio, major vascular bundles position in foliage leaf, minor vascular bundles position in foliage leaf, ratio of adaxial to abaxial epidermal cells in foliar leaf, angle of foliage leaf keel at adaxial side, maximum thickness at one half middle of
foliage leaf, total number of vascular bundles in bract leaf, total number of bulliform cells in bract leaf, angle of bract leaf margin, angle of keel at abaxial side of bract leaf (Tab. 2) varies between sample to sample of C. imbricatus, C. difformis, C. rotundus, and C. michelianus sub sp. pygmaeus.
Presence of air cavities in foliage leaf, major vascular

Table 4. Correlation of variation among studied samples.

			$\begin{aligned} & \text { N్N } \\ & \text { N} \\ & \text { N} \\ & \text { N } \end{aligned}$	N N N N N	$\begin{aligned} & \bar{N} \\ & \underset{\sim}{n} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { N } \\ & \text { N} \\ & \text { ָ̀ } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N} \\ & \text { cin } \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N} \\ & \stackrel{\sim}{3} \end{aligned}$			ö N $\underset{\sim}{\sim}$ n
BURD12019	1	0.8	0.6	0.7	0.5	0.57	0.7	0.5	0.24	0.2	0.08	0.3
BURD12029	0.82	1	0.6	0.6	0.4	0.51	0.7	0.4	0.29	0.3	0.05	0.39
BURD12020	0.62	0.6	1	0.9	0.8	0.43	0.6	0.5	0.12	0.1	0	0.24
BURD12028	0.68	0.6	0.9	1	0.8	0.43	0.6	0.4	0.16	0.1	0	0.2
BURD12031	0.5	0.4	0.8	0.8	1	0.4	0.5	0.4	0.21	0.1	0	0.24
BURD12021	0.57	0.5	0.4	0.4	0.4	1	0.7	0.6	0.08	0.1	0.19	0.25
BURD12024	0.71	0.7	0.6	0.6	0.5	0.69	1	0.7	0.32	0.3	0.21	0.47
BURD12040	0.48	0.4	0.5	0.4	0.4	0.57	0.7	1	0.38	0.4	0.38	0.34
BURD12025	0.24	0.3	0.1	0.2	0.2	0.08	0.3	0.4	1	0.9	0.39	0.68
BURD12042	0.18	0.3	0.1	0.1	0.1	0.07	0.3	0.4	0.88	1	0.38	0.61
BURD12030	0.08	0.1	0	0	0	0.19	0.2	0.4	0.39	0.4	1	0.23
BURD12039	0.3	0.4	0.2	0.2	0.2	0.25	0.5	0.3	0.68	0.6	0.23	1

bundles position in relation to air cavities in foliar leaf, presence of minor vascular bundles, morphology of foliage leaf blade margins, total number of bulliform cells in foliage leaf, foliage leaf mestome sheaths form, angle of foliage leaf margin, bract leaf air cavities, major vascular bundles position in relation to air cavities in bract leaf, presence of minor vascular bundles in bract leaf, bract leaf blade margin morphology, bract leaf mestome sheaths form, depth of keel in bract leaf, maximum thickness at one half middle of bract leaf (Tab. 2.) are possible inter-specifically variable characters (supp. Tab. 3.). These characters can be used as the diagnostic character among the studied taxa.
As suggested by Standley (1987), the ratio of adaxial and abaxial epidermal cell is a taxonomically useful character for Carex sect. Phacocystis (Cyperaceae). But the present study shows that it is also useful for studied species. The value is always more than 2 and reached up to 7.99 in foliage leaf of C. cyperoides. But it shows variation at the species level (supp. Tab. 3.). It is constantly ≥ 4.5 in case of C. imbricatus (supp. Tab. 3.).

The presence and absence prickle hairs on the margins of the foliage leaves show distinct difference among Carex sect. Phyllostachys (Starr \& Ford 2001). In the present study, only C. imbricatus and C. cyperoides contain prickle hairs and it is useful to separate the species among groups (Tab. 4.).
Govindarajalu (1974) reported that occurrence of ' V ' shaped foliage leaf in trans-section, 5 celled bulliform cells in foliage leaf, the presence of air cavities in foliage leaf, 23 vascular bundles in foliage leaf were characteristic features of C. pygmaeus Rottb. In our study C. michelianus subsp. pygmaeus (it was previously treated as C. pygmaeus Rottb.) shows similar result though the number of bulliform cells varies from 5 to 6 , number of the vascular
bundle in foliage leaf ranges from 28 to 43 . Govindarajalu (1974) also reported that presence of prickle hair at leaf margin, V ' shaped foliage leaf in trans-section, 75 vascular bundles in foliage leaf, 11-12 bulliform cells in C. cyperoides but present investigation shows that the number of vascular bundle in foliage leaf may reaches up to 60 and number bulliform cells may vary from 10 to 11 in C. cyperoides.

The variability in a number of bulliform cells has already been reported in Carex hirta by Molina et al. (2006); Bugg et al. (2013) and is confirmed in the present studied species.
Rad \& Sonboli (2008) observed C. rotundus having flanged ' V ' shaped foliage leaf in trans-section, the presence of air cavities and bulliform cells in adaxial side of midrib. Dhyani (2017) also reported single layered bulliform cells are distributed in upper epidermis of C. rotundus. The data presented in this investigation shows bulliform cells are specifically distributed in keel region of adaxial epidermis; it also includes the width of the foliage leaf in trans-section may vary from $20-30 \mathrm{~mm}$. Bugg et al.(2013) suggested that, shape of the transverse section of leaves are useful as taxonomic characters which supports by the present study but the other characters like, the relative size of adaxial and abaxial epidermal cells in foliage leaf, the number of layers of bulliform cells in foliage leaf, the size relationship between bulliform and epidermal cells in foliage leaf, the number of vascular bundle in foliage leaf, the depth of the keel in foliage leaf, suggested by them are not useful for identification of the studied species at species level due to variation.

Identification key to the Cyperus species

1a. The angle of foliar leaf margin more than 60°;
transverse septum between air chamber bicellular, multicellular or heterogeneous.
2a. Foliage leaf and bract leaf margin armed with prickle-hairs, Foliage leaf to bract leaf length ratio 1:1, foliage leaf, width more than 20 mm , vascular bundle more than 50 , depth of the keel more than $300 \mu \mathrm{~m}$; bract leaf, major vascular bundle closer to abaxial surface, angle of keel at adaxial side more than 90°.

Cyperus cyperoides
$\mathbf{2 b}$. Foliage leaf and bract leaf margin without pricklehairs, foliage leaf to bract leaf length ratio more than 1:1, Foliage leaf, width 20 mm or less, vascular bundle less than 50, depth of the keel less than $300 \mu \mathrm{~m}$; bract leaf, major vascular bundle more or less middle of the leaf, angle of keel at adaxial side less than 90°.

3
3a. Foliage leaf blades, more than 10 cm long, flanged ' V ' shaped in trans-section, air cavities present, minor vascular bundles closer to the adaxial surface, major vascular bundle more or less middle; bulliform cells more than 7 , bulliform cells larger than epidermal cells.

Cyperusiria
3b. Foliage leaf blades less than 10 cm long, 'V' shaped in trans-section, air cavities absent, minor vascular bundles closer to the abaxial surface, major vascular bundle closer to the abaxial surface; bulliform cells less than 7 , bulliform cells similar with epidermal cells Cyperus michelianus subsp. pygmaeus
$\mathbf{1 b}$. The angle of foliar leaf margin less than 60°; transverse septum between air chamber absent. 4
4a. Mestome sheath non-chlorenchymatous in bract leaf and foliage leaf, minor vascular bundles absent Cyperus difformis
4b. Mestome sheath chlorenchymatous in bract leaf and foliage leaf, minor vascular bundles present. $\mathbf{5}$
5a. Foliage leaf and bract leaf margin armed with prickle hairs; foliage leaf ' V ' shaped in trans section, the angle of the keel at abaxial side more than 90°; bract leaf, air cavities present, bulliform cells similar with epidermal cells, the maximum thickness at one-half middle of lamina more than $300 \mu \mathrm{~m}$

Cyperus imbricatus
5b. Foliage leaf and bract leaf margin without prickle hairs; foliage leaf blade flanged ' V ' shaped in transsection, the angle of the keel at abaxial side less than 90°; bract leaf, air cavities absent, bulliform cells larger than epidermal cells, the maximum thickness at the one-half middle of lamina less than $300 \mu \mathrm{~m}$

Cyperus rotundus

Conclusion

It can be concluded that out of 50 evaluated anatomical characters 14 characters of foliage leaf and bract leaf of
the studied species (like, presence of air cavities in foliage leaf, major vascular bundles position in relation to air cavities in foliar leaf, presence of minor vascular bundle, morphology of foliage leaf blade margins, total number of bulliform cells in foliage leaf, foliage leaf mestome sheaths form, angle of foliage leaf margin, bract leaf air cavities, major vascular bundles position in relation to air cavities in bract leaf, presence of minor vascular bundle in bract leaf, bract leaf blade margin morphology, bract leaf mestome sheaths form, depth of keel in bract leaf, maximum thickness at one half middle of bract leaf) provide valuable anatomical feature that is helpful for taxonomic delimitation of the studied species. It is also noted that the resolution of these characters for species identification is higher when all the character are used simultaneously rather than specific individual character.

Acknowledgments

The first author is grateful to the UGC, Govt. of India for providing Fellowship. Authors are thankful the HoD Department of Botany, The University of Burdwan, India for giving the laboratory facilities and University Science Instrumentation Center (USIC), The University of Burdwan for instrument facilities.

References

Muasya A.M., Simpson D.A., Verboom G.A., Goetghebeur P., Naczi R.F.C., Chase M.W., Smets E. 2009. Phylogeny of Cyperaceae based on DNA sequence data: Current progress and future prospects. Bot. Rev. 75: 2-21. https://link.springer.com/article/10.1007/s12229-008-9019-3
Lunkai D., Sungyun L., Shuren Z., Yancheng T., Koyama T., Tucker G.C., Simpson D.A., Noltie H.J., Strong M.T., Bruhl J.J., Wilson K.L., Muasya A.M. 2010. Cyperaceae. Flora of China. 23: 164-461. http:// www.efloras.org/florataxon.aspx?flora_id=28taxon_id=10246
Kukenthal G. 1936. Cyperaceae-Scirpoideae-Cypereae. In: Engler (ed.). Das Pflanzenreich IV. 20, 101: 1-671.
Rad M.A., Sonboli A. 2008. Leaf and stem anatomy of Cyperus subgenus Cyperus in Iran. Rostaniha 9: 6-22. https://www.sid.ir/en/journal/ ViewPaper.aspx?ID=122723
Prasad V.P., Singh N.P. 2002. Sedges of Karnataka, Scientific Publisher, Jodhpur, India. https://www.cabdirect.org/cabdirect/ abstract/20023115562
Reznicek A.A. 1990. Evolution in sedges (Carex, Cyperaceae). Can. J. Bot. 68: 1409-1432. http://www.nrcresearchpress.com/ doi/10.1139/b90-180\#.W7y01GgzbIV

Starr J.R., Bayer R.J., Ford B.A. 1999. The phylogenetic position of Carex section Phyllostachys (Cyperaceae) and its implication for phylogeny and subgeneric circumscription in Carex. Amer. J. Bot. 86: 563-577. https://onlinelibrary.wiley.com/doi/ pdf/10.2307/2656818

Metcalfe C.R. 1971. Anatomy of the monocotyledons. V. Cyperaceae. Clarendon Press, Oxford, U.K.
Govindarajalu E. 1974. The systematic anatomy of south Indian Cyperaceae: Cyperus L. subgen. Juncellus, Cyperussubgen. Mariscus andLipocarphaR.Br.Bot. J.Linn. Soc.68:235-266. https:// onlinelibrary.wiley.com/doi/pdf/10.1111/j.1095-8339.1974. tb01761.

Reznicek A.A., Catling P.M. 1986. Vegetative shoot in the taxonomy of sedges (Carex, Cyperaceae). Taxon. 35: 495-501.
Standley L.A. 1990. Anatomical aspect of the taxonomy of sedges (Carex, Cyperaceae). Can. J. Bot. 68: 1449-1456. http://www. nrcresearchpress.com/doi/10.1139/b90-183\#.W7yPiGgzbIU

Hejazi J., Bahrami A.R., Vaezi J., Memariani F., Joharchi M.R. 2012. Application morphometric and taxonomic study of the Carex L. (Cyperaceae) in Northeast of Iran. J. Biol. Today's World 1: 21-31. https://www.lexispublisher.com/articles/application-morphometric-and-taxonomic-study-of-the-genus-carex-I-cyperaceae-in-northeast-of-iran.pdf doi: 10.15412/J. JBTW. 01010105

Plunkett G.T., Wilson K.L., Bruhl J.J. 2013. Sedges in the mist: a new species of Lepidosperma (Cyperaceae, Schoeneae) from the mountains of Tasmania. Phytokeys. 28: 19-59. https://www.ncbi. nlm.nih.gov/pmc/articles/PMC3881413/
Silva A.L., Alves M.V.S., Coan A.I. 2014. Importance of anatomical leaf features for characterization of three species of Mapania (Mapanioideae, Cyperaceae) from the Amazon forest, Brasil. Acta Amazonica. 44: 447-456. http://www.scielo.br/scielo. php?script=sci_arttext\&pid=S0044-59672014000400006
Pashirzad M., Vaezi J., Moghaddam D.A., Memariani F., Joharchi M.R. 2014. A species-level of morphological and nut micromorphology study of the Cyperus complex (Cyperaceae) in Northeast Iran. Ann. Res. Rev. Biol. 4: 3848-3862. http:// www.journalrepository.org/media/journals/ARRB_32/2014/Jul/

```
Pashirzad4242014ARRB11165_1.pdf
```

Bruhl J.J. 1995. Sedge genera of the world: relationships and new classification of the Cyperaceae. Aust. Syst. Bot. 8: 125-305. https://www.publish.csiro.au/sb/SB9950125

Bugg C., Smith C., Blackstock N., Simpson D., Asthon P.A. 2013. Consistent and variable leaf anatomical characters in Carex (Cyperaceae). Bot. J. Linn. Soc.172: 371-384. https://academic. oup.com/botlinnean/article/172/3/371/2416205

Standley L.A. 1987. Anatomical and chromosomal studies of Carex section Phascocystis in Eastern North America. Bot. Gazette. 148: 507-518.

Starr J.R., Ford B.A. 2001. The taxonomic and phylogenetic utility of vegetative anatomy and fruit epidermal silica bodies in Cares section Phyllostachys (Cyperaceae). Can. J. bot. 79: 362-379. https://doi.org/10.1139/b01-004

Molina A., Acedo C., Liamas F. 2006. The relationship between water availability and anatomical characters in Carex hirta. Aquatic Botany. 58: 257-262. https://www.sciencedirect.com/science/ article/pii/S0304377006000829
Dhyani S. 2017. Morphological and micromorphological features of leaf and stem of Cyperus rotundus Linn. And Cyperus procerus Rottb. A comparative analysis. Int. J. Res. Ayurveda Pharm. 8: 46-51. https://www.ijrap.net/admin/php/uploads/1697_pdf.pdf

[^0]: © The Author(s) 2018. Published by Andriy Novikov, State Natural History Museum NAS of Ukraine on behalf of Modern Phytomorphology. This is an open access article under the Creative Commons BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/) freely available on https://phytomorphology.org/.

